The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers, electron configurations, and recurring chemical properties. Elements are presented in order of increasing atomic number (number of protons). The standard form of the table comprises an 18-column-by-7-row main grid of elements, with a double row of elements below. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that.
The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences.
Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table. He developed his table to illustrate periodic trends in the properties of the then-known elements. Mendeleev also predicted some properties of then-unknown elements that would be expected to fill gaps in this table. Most of his predictions were proved correct when the elements in question were subsequently discovered. Mendeleev's periodic table has since been expanded and refined with the discovery or synthesis of further new elements and the development of new theoretical models to explain chemical behavior.
All elements from atomic numbers 1 (hydrogen) to 118 (ununoctium) have been discovered or synthesized. The elements from 1 to 98 (californium) have been found to exist naturally, although some
are found only in trace amounts and were initially discovered by synthesis in laboratories. The elements after 98 have only been synthesized in laboratories. Production of elements beyond ununoctium is being pursued, with the question of how the periodic table may need to be modified to accommodate any such additions being a matter of ongoing debate. Numerous synthetic radionuclides of naturally occurring elements have also been produced in laboratories.
Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table. He developed his table to illustrate periodic trends in the properties of the then-known elements. Mendeleev also predicted some properties of then-unknown elements that would be expected to fill gaps in this table. Most of his predictions were proved correct when the elements in question were subsequently discovered. Mendeleev's periodic table has since been expanded and refined with the discovery or synthesis of further new elements and the development of new theoretical models to explain chemical behavior.
All elements from atomic numbers 1 (hydrogen) to 118 (ununoctium) have been discovered or synthesized. The elements from 1 to 98 (californium) have been found to exist naturally, although some
are found only in trace amounts and were initially discovered by synthesis in laboratories. The elements after 98 have only been synthesized in laboratories. Production of elements beyond ununoctium is being pursued, with the question of how the periodic table may need to be modified to accommodate any such additions being a matter of ongoing debate. Numerous synthetic radionuclides of naturally occurring elements have also been produced in laboratories.
No comments:
Post a Comment